
Everything on the Chip: A Hardware-Based

Self-Contained Spatially-Structured Genetic
Algorithm for Signal Processing

Simon Perkins, Reid Porter, and Neal Harvey

Los Alamos National Laboratories, Los Alamos, NM 87545, USA,
{s.perkins,rporter,harve}@lanl.gov,

WWW home pages: http://nis-www.lanl.gov/{~simes,~rporter,~harve}

Abstract. Evolutionary algorithms are useful optimization tools but
are very time consuming to run. We present a self-contained FPGA-
based implementation of a spatially-structured evolutionary algorithm
that provides significant speedup over conventional serial processing in
three ways: (a) efficient hardware-pipelined fitness evaluation of individ-
uals, (b) evaluation of an entire population of individuals in parallel,
and (c) elimination of slow off-chip communication. We demonstrate us-
ing the system to solve a non-trivial signal reconstruction problem using
a non-linear digital filter on a Xilinx Virtex FPGA, and find a speedup
factor of over 1000 compared to a C implementation of the same sys-
tem. The general principles behind the system are very scalable, and as
FPGAs become even larger in the future, similar systems will provide
extremely large speedups over serial processing.

1 Introduction

Evolutionary algorithms (EAs) are perhaps the most general purpose practical
optimization technique in use today. The same basic processes of evaluation,
selection and recombination can be applied to any problem for which a fitness
function and representation can be defined. The price we pay for this generality
is that EAs typically take a very long time to find a solution for hard problems,
as compared to more problem-specific techniques that make use of information
about the nature of the problem being tackled.

The core process of almost all EAs involves performing a very large number
of fitness evaluations. As a result, any way of speeding up fitness evaluations
has significant consequences for how long the EA will take to solve a problem.
Many researchers have looked at speeding up evaluation using reconfigurable
hardware such as FPGAs (see [Higuchi et al., 1996] and [Sipper et al., 1998] for
examples). Hardware fitness evaluation can provide a large speedup over software
fitness evaluation in those cases where the fitness evaluation can be decomposed
into many simple steps that can be carried out in parallel on the chip. For
example, image processing algorithms are very time consuming to evaluate on
a serial processor, but can be much more efficiently executed using a hardware
pipeline.



A complementary approach to speeding up fitness evaluation is to use the
hardware to carry out many fitness evaluations in parallel. In the limit, this would
involve putting an entire EA population onto an FPGA. However, putting many
evaluation units on a chip pushes very hard against the space limits of current
FPGAs and so there are very few examples of this technique in the literature.
One active area where we do see whole populations on a chip is the ‘cellular
programming’ paradigm [Sipper, 1997]. CP solves the problem of fitting many
units on a chip by making those units very simple — the basic individual in
a CP system is a single cell of a cellular automaton, which implements only
a very simple combinational logic function of its neighbors’ states. The idea is
that, although each component is very simple, complex large-scale behaviour
can be achieved through local interactions between individuals in the evolving
population. While this approach is very promising, it seems clear that it will not
work for all problems. For more general EAs, we would like each individual to
be capable of an arbitrary amount of computation by itself. Unfortunately, more
complex individuals require more space per individual and space has always been
at a premium on FPGAs.

However, the state of the art has recently taken a major leap forward with
the arrival of the Xilinx Virtex FPGA [Xilinx, 1999]: a ‘million-gate equivalent’
part with a vast array of exciting hardware features that may well make it ideally
suited to EA implementations. With the arrival of these chips it has now become
feasible to place a reasonably sized population of reasonably complex individuals
on a single FPGA part, with the following important consequence: if we choose
our problem and our individuals appropriately we can then use the hardware to
get a speedup in three significant ways:

– We get speedup by evaluating many individuals in parallel.
– We get speedup because with the extra space we can perform each of those

evaluations in efficient hardware-parallel fashion.
– By putting the entire EA onto the chip, we get speedup by eliminating

relatively slow chip-to-host communication and/or FPGA reconfiguration.

In this paper, we present preliminary results evolving a population of non-
linear digital filters on a single Virtex chip to solve a non-trivial 1-D signal
reconstruction problem. More important than the particular application though
are the general architectural principles which can be expanded as FPGAs grow
larger to provide greater and greater speedups compared to conventional pro-
cessing.

2 Problem Definition and General Approach

2.1 1-D Signal Reconstruction

In the experiments reported in this paper, we look at the problem of recon-
structing a pure signal from a digitized signal that has been corrupted with
‘shot’ noise: upsets that occur randomly at a constant expected rate and that



set the value of a sample to a totally random level. Such reconstruction problems
occur in many practical situations, such as cleaning up signals sent over noisy
channels in telecommunications systems. We would like our EA to design a filter
that transforms the corrupted signal into a close approximation of the original
one.

Stack Filters One important class of techniques for performing reconstruction
makes use of ‘stack filters’. A stack filter (SF) is a sliding window non-linear filter
whose output at each window position is determined by applying a particular
positive boolean function1 (PBF) to a ‘threshold decomposed’ representation of
the window.

The threshold decomposition process and subsequent filter operation is easily
visualized as follows: take the 1-D string of values in the window to which the
SF is being applied, and imagine them forming a 2-D ‘wall’ where the height
of the wall at each window location corresponds to the value in that location.
Then imagine taking 1-D horizontal slices of the wall, at every possible level
(since we assume the signal values are discrete, there are only a finite number
of such slices). Each slice gives us a 1-D string of boolean values where ‘true’
corresponds to ‘inside the wall’ and ‘false’ corresponds to ‘outside the wall’. We
apply the filter’s PBF to each of these slices and find the total number of ‘true’
results we got from all the slices. This number is then the output of the filter at
that window location. The fact that we use a positive boolean function, ensures
that the output value is one of the input values.

Stack filters include as a subset such commonly used non-linear filters as the
median filter, weighted median filter and other rank-order filters.

A number of researchers have used genetic algorithms to optimize stack fil-
ters, notably Chu in [Chu, 1990]. At least one researcher has also looked at
evolving stack filters on an FPGA [Woolfries et al., 1998], but using the more
‘conventional’ technique of downloading and evaluating them one at a time on
the chip.

Implementing Stack Filters in Hardware The threshold decomposition
phase of stack filters can be time-consuming. For an 8-bit signal, there are 256
different levels at which to threshold, and hence each filter operation requires 256
evaluations of the PBF. Fortunately, there are more efficient ways of comput-
ing the same result. The technique we use was proposed by Chen [Chen, 1989]
specifically for implementation in hardware. It relies on binary search and only
requires a number of PBF evaluations equal to the number of bits used to repre-
sent the signal. The method assumes that the input values to the filter arrive as
parallel bit-streams, MSB first. The PBF is first applied to the most significant
bits of the input values, giving the MSB of the output value. If any of the input
bits have a different value to the output bit, then that input stream is ‘latched’

1 A positive boolean function is a boolean function that can be written using just
AND and OR and without negating any of the inputs.



at its current value. The PBF is then applied to the next bits from the streams,
giving the next output bit, and the process repeats.

Stick Filters. . . Chen’s method produces results equivalent to the proper stack
filter algorithm, if the boolean function used is a positive boolean function. How-
ever, in the context of a genetic algorithm, it turns out to be fairly inconvenient
to generate PBFs. The reason is that only a small fraction of all possible boolean
functions for a given number of inputs are actually positive boolean functions,
and it is time-consuming to check whether any particular boolean function is
positive or not. In our experiments, we use a 5-element window, and so the
boolean function can be defined by a truth table containing 32 1-bit values.
There are 232 ≈ 4.3 × 109 possible such truth tables but in fact only 7581 of
these represent positive boolean functions.

Our solution is simply to ignore the problem. We apply Chen’s method using
arbitrary boolean functions. The result is a stack filter if the boolean function
happens to be one of the 7581 5-input PBFs, and ‘something else’ if it isn’t.
Exactly ‘what’ is difficult to describe concisely. The resulting filters are a rather
strange class of non-linear digital filters that are a superset of stack filters. We
call them ‘stick filters’, in reference to the way in which input bit stream values
get ‘stuck’ if they disagree with the output value. The weird and wonderful space
of stick filters is ideally suited to exploration by a genetic algorithm.

2.2 Genetic Algorithm Details

Representation Once the window size has been fixed, the operation of a stick
filter is defined by its boolean function. For the 5-element windows we use in our
experiments, an arbitrary boolean function can be represented by a 32 element
truth table. It seems sensible to use a direct genomic representation here, and so
the genome for an individual in our GA is simply a binary string giving the truth
table for its boolean function, with the output value for an input of ‘00000’ at
the left end. Genetic operations are carried out directly on this representation.

Evolutionary Algorithm We use a fine-grained spatially-structured genetic
algorithm that is similar to that used by Moshe Sipper in his cellular program-
ming work [Sipper, 1997] and to other more conventional GA practitioners such
as [Manderick and Spiessens, 1989]. A population of 48 evolutionary cells is dis-
tributed over an 6× 8 grid on the FPGA. The cells are initialized with random
truth tables. Each cell also maintains an error counter E, which is initialized to
zero.

Once initialization is complete, evaluation begins. Each cell in the grid re-
ceives the same training data, consisting of a corrupted signal Sc and an un-
corrupted version of the signal Su, with the latter delayed by 2 time steps with
respect to the former. At each time step (after the first 4), it applies the stick filter
to a window consisting of the last 5 samples of Sc to generate a ‘reconstructed’
signal Sr. The absolute difference d between this output and the uncorrupted



signal’s value at that time is computed and this value is added to E. After a
fixed number of times steps τ , fitness evaluation is complete. This process is
illustrated in Figure 1.

tt-1t-2t-3t-4t-5t-6

EStack
Filter

−

+
S

u

S
c

S
r

Fig. 1. Basic step of stack filter evaluation phase.

Once each cell’s total error E has been determined, the GA goes into a
breeding mode. Each cell compares its own error with that of each of its four
neighbors to the north, east, south and west on the grid (toroidal wraparound
is used at the edges). Once the fittest cell in its neighborhood has been found
(this can be itself), uniform crossover is performed with the cell and its fittest
neighbor. Note that if a cell is the fittest in its neighborhood then this uniform
crossover leaves the cell unchanged. Point mutation is then applied to every
element in the truth table of each cell with probability pm. The effect of mutation
is to flip that element’s value.

Once breeding is over, the error counter is reset to zero, and the cycle repeats.

3 Simulation Experiments

3.1 Experimental Setup

A software simulator was written in Java, to test out the ideas behind the project.
This functioned in an identical manner to that described above (except for run-
ning on a serial computer rather than an FPGA!). A signal consisting of a sine-
wave with period equal to 20 time steps, quantized into 256 levels and corrupted
by adding random shot noise was used as training input. Noise was added at an
average rate (Poisson distributed) of 0.2 per time step. The effect of the noise
was to drive the signal to a random value between 0 and 255, for that time step
only.

The training period T was set to 2048 time steps, and the probability of a
bit mutation pm was set to 0.01 per bit.



3.2 Results

Figure 2 shows the way in which the error of the best individual in the population
fell with generation number. The y-axis indicates the average error per sample
of the best individual. Also shown is the error obtained on the same signal data,
using a conventional 5-input median filter — a commonly used filter for removing
impulse noise. The curves were obtained by averaging over five separate runs with
different random number seeds.

Fig. 2. Best average error vs. time graphs. The solid line shows the results from the
best evolved filter, while the dashed line shows the results for a conventional 5-input
median filter.

The graphs show clearly that the best of the initial random population fails to
do as well the median filter, but after about 10 generations the best of the evolved
filters begin to do consistently better than the median filter. There is some
variation in the error scores from one generation to the next due to variations
in the randomly generated input signals, but even so, the evolved filter always
does better than the median.

A possible objection to this conclusion is that the ‘best’ evolved filter is
chosen from 48 different candidates every generation, which could lead to an
unfair bias in favor of the evolved filters. To counter this objection we took the
most commonly evolved final genome (see below) and compared it head-to-head
against the median filter on a fresh corrupted signal for an evaluation period of
30000 cycles. We also tested the filters on signals with different periods and dif-
ferent noise rates. Two-tailed paired sample t-tests were used to investigate (and
confidently reject) the null hypothesis that the filters were performing identically
on average. Table 1 summarizes these results.

An interesting fact is that in all the five runs performed for Figure 2, the same
individual appeared most frequently in the final generation. This individual had
the genome: 00000011000111110000011100111111.



Signal Period Noise Rate Median Filter Evolved Filter p

20 0.2 15.9 12.9 � 0.001

20 0.4 32.5 29.7 � 0.001

10 0.2 36.1 19.8 � 0.001

10 0.4 50.6 38.4 � 0.001

Table 1. Comparison of the best evolved filter with the median filter on various test
problems. The third and fourth columns give the mean error per sample achieved
during the tests. The final column gives the p-value for the null hypothesis that the
mean performance of the filters is the same.

On closer inspection this turns out to be a positive boolean function (despite
the fact that there was no explicit attempt to produce one) and seems to perform
a ‘weighted-center’ median filter.

4 FPGA Implementation

Our design is targeted at the Annapolis Microsystems WildCard. This PCMCIA
card contains a Xilinx Virtex 300 part and two independent banks of 256kB
SRAM. The top level architecture for a cell is illustrated in Figure 3.

BCount

LSBFitness

East
EastD

North
NorthD

South
SouthD

West
WestD

CMPCtrlStage1
CMPCtrlStage2

CMPCtrlStage3

CmpRStage1
CmpRStage2
CmpRStage3

LSBCtrlStage1
LSBCtrlStage2
LSBCtrlStage3

GreaterBit3Random

Genome1
Genome2

MSBTruth
Input

ReadAddress

WriteAddress

WE
CLK

Genome
Prog1
Prog2

CrossOverR

NewGenome2

C

NewGenome1

R

GreaterBit1
GreaterBit2

GA

Input1 PBFOut MSBIn
PBFOut

CLK

ErrorAcc

Clk FlagEnable

Prog1
Prog2

StackRWE

Stick
LSBCtrlAdd

RAddAccInputCtrlCLK

MSBTruth
RSub

CMPCtrl
CmpLSBCtrl

CmpR

Input2
Input3
Input4
Input5

MeLSB

MeLSBD

Clk

FitCompare

GreaterBit1
GreaterBit2

Me

Random

North
South
East
West

GreaterBit3

Fig. 3. Top level FPGA design.

At any one time a cell is in one of three modes. The mode is determined
by control lines shown in Figure reffig:TopLevel with unshaded terminal nodes.
Since all cells on the array are operating synchronously these control lines are



driven by a central controller common to all cells. A cell receives both genome and
fitness information from its four neighbors illustrated by the shaded terminals
‘North’, ‘South’, ‘East’ and ‘West’. The cell’s own genome and fitness information
are communicated to its four neighbors via the black terminal ‘Me’.

In the first mode of operation, the stick filter’s fitness is evaluated over 2048
input samples within the ‘ErrorAcc’ function block.

In the second mode of operation, this accumulated error is compared to error
values of the cell’s neighbors in the ‘FitCompare’ function block. The fittest
neighbor is determined, and communicated to the ‘GA’ function block through
the ‘GreaterBit’ control lines.

In the third mode of operation, the ‘GA’ function block makes use of a pre-
loaded random bit stream entering through the ‘Random’ terminal to implement
uniform crossover and mutation as described before, and to reprogram the stick
filter.

Th re s h o ld e d In p u tSig n a ls

Pa c k a g e Lis t

ie e e s td _ lo g ic _ 1 1 6 4
ie e e n u me ric _ s td
u n is im VCOMPONENTS
ie e e v ita l_ timin g

Ne wPBF

PBFCo u n te r

MUX2
PBFOu t

DPRA0
DPRA1
DPRA2
DPRA3

De c la ra tio ns

D
A0
A1
A2
A3

RAM1 6 X1 D
Pro g LUT1

I1

DPRA0
DPRA1
DPRA2
DPRA3

D
A0
A1
A2
A3

RAM1 6 X1 D
Pro g LUT2

I0

I2

Fig. 4. Details of PBF implementation.

The core of a cell’s signal processing power lies in the ‘Stick’ function block.
The bit-serial nature of Chen’s stack filter implementation results in an extremely
compact architecture that is well suited to the Virtex FPGA. The complete
filter can be implemented in just 3 Virtex CLBs (Configurable Logic Blocks).
1.5 of these CLBs are used to implement the cell’s boolean function in the
manner shown in Figure 4. The two programmable LUTs (configured as dual port
RAMS) receive 4 of the 5 input samples through the ‘ReadAddress’ terminal and
output to a multiplexer controlled by the 5th input sample. This configuration
can implement any function of five variables. A very similar configuration is



found in the ‘Genome’ function block which holds a duplicate copy of the stick
filter’s 5-input boolean logic function.

Training data is pre-loaded into onboard memory in bit serial order, most
significant bit first. On reset the cell array remains in an ‘idle’ configuration. At
this time each cell’s genome is configurable by the host processor. The array is
activated when the host processor writes the number of desired generations to
an on-chip register. The array then iterates for this number of generations, and,
when complete, initiates an interrupt and returns to the idle configuration. At
this stage the host program may once again read and write cell genomes.

A VHDL model of the GA has been both simulated and synthesized success-
fully for the Virtex 300 FPGA used on the WildCard. Table 2 analyzes the area
requirements for the various components. Each CLB slice contains two 4-input
look-up tables and two 1 bit registers. The controller moves each cell through
its three modes of operation and also provides synchronization mechanisms for
communicating with the host. The WildCard interfaces enable communication
between the FPGA and onboard memory as well as to the host through the 32
bit CardBus.

Component Number of CLB Slices Percentage of Total

48 Cell Array 1904 62
Controller 43 1.5

WildCard Interfaces 549 18

Total 2496 81.5

Table 2. Space utilization on the Virtex 300.

Timing Experiments

For 8 bits/sample data, cells require 16 clock cycles to process one sample. Due
to high fan out in synchronizing the cell array, clock rates were restricted to
20MHz, however higher rates are believed to be obtainable with more detailed
design work. At this clock speed, the FPGA can run through one of the above
experiments, using 48 individuals, run for 50 generations, and evaluated for
2048 time steps each generation, in an impressive 1.65 ms! In contrast, the Java
simulator takes well over 5 minutes to achieve the same result.

Of course, the Java simulator was optimized for visualization rather than
speed, so the core of the GA was re-implemented using C. The optimized C code
took 1.8 s to perform the above experiment — still over 1000 times slower than
the FPGA.



5 Further Work and Conclusions

At the time of writing the synthesized design has not actually been placed onto
a real FPGA due to problems with our hardware, but we hope to remedy this
in the near future.

It should be pointed out that the problem tackled here, while non-trivial,
is not all that hard either — after all, a software version of the GA was able
to find good solutions in just a few seconds! In order to demonstrate a real
advantage we would like to extend the work here to look at optimizing more
complicated types of signal and image processing functions that are intractably
difficult to optimize in software. As an example, merely increasing the window
neighborhood of our stick filter from 5 to 7 elements, increases the number of
potentially useful positive boolean functions from 7851 to over 3× 1010! We can
also imagine using FPGAs in situations where relatively simple problems such
as this one must be solved extremely quickly. For instance, suppose we want to
install an adaptive signal reconstructor on a communications channel that must
re-evolve to match changing noise conditions (using a known signal sent over the
channel as truth data), every few minutes.

As FPGAs continue to grow in size it will become easier and easier to fit
larger and larger populations of more complex individuals on single chips and so
we confidently expect this area of research to be a fruitful one.

References

[Chen, 1989] Chen, K. (1989). Bit-serial realizations of a class of nonlinear filters based
on positive boolean functions. IEEE Transactions on Circuits and Systems, 36(6).

[Chu, 1990] Chu, C. (1990). The application of an adaptive plan to the configuration
of nonlinear image processing algorithms. In SPIE Proceedings - Nonlinear Image
Processing, volume 1247, pages 248–257.

[Higuchi et al., 1996] Higuchi, T., Iwata, M., and Liu, W., editors (1996). Evolvable
Systems: From Biology to Hardware: Proc. ICES ’96, volume 1259 of Lecture Notes
in Computer Science. Springer.

[Manderick and Spiessens, 1989] Manderick, B. and Spiessens, P. (1989). Fine-grained
parallel genetic algorithms. In Schaffer, J., editor, Proc. 3rd Int. Conf on Genetic
Algorithms. Morgan Kaufmann.

[Sipper, 1997] Sipper, M. (1997). Evolution of Parallel Cellular Machines, volume 1194
of Lecture Notes in Computer Science. Springer-Verlag.

[Sipper et al., 1998] Sipper, M., Mange, D., and Pérez-Uribe, A., editors (1998). Evolv-
able Systems: From Biology to Hardware: Proc. ICES ’98, volume 1478 of Lecture
Notes in Computer Science. Springer.

[Woolfries et al., 1998] Woolfries, N., Lysaght, P., Marshall, P., McGregor, S., and
Robinson, G. (1998). Fast adaptive image processing in fpgas using stack filters.
In Hartenstein, R. W. and Keevallik, A., editors, Field Programmable Logic and Ap-
plications: From FPGAs to Computing Paradigm: 8th Int. Workshop.

[Xilinx, 1999] Xilinx, I. (1999). Virtex 2.5v field programmable gate arrays. Advance
Product Specification. Version 1.3.


